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How Mer ge SOl‘t WOI’kS ? :

To understand merge soit, we take an uns -

) ¢ Insorted array as the followi
lowing
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We know that me
g e di
ammay of 8 items i rg‘ _SO"' 1."lrsl divides the whole array iteratively into equal halves unless the atomic values are achieved. We see here that an
} NS is divided into two arrays of size 4.
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This does not change the sequence of appearance of items in the original. Now we divide these two arrays into halves.
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We further divide these arrays and we achieve atomic value which can no more be divided.
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ere broken down. Please note the color codes given to t
anner. We see that 14 and 33 are in sorted
We change the order of 19 and 35 whereas

Now, we combine them in exactly the same manner as they w
en combine them into another list in a sorted m

We first compare the element for each list and th
t list of 2 values we put 10 first, followed by 27.

positions. We compare 27 and 10 and in the targe

42 and 44 are placed sequentially.
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e, we compare lists of two data values, and merge them into a list of found data values placing all i

In the next iteration of the combining phas
a sorted order.
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After the final merging, the list should look like this =

Bnooooos

Now we should learn some programming aspects of merge sorting.

Algorithm

Merge sort keeps on dividing the list into equal halves until it can no more be divided. By definition, if it is only one element in the lis!

sorted. Then, merge sort combines the smaller sorted lists keeping the new list sorted too.

Step 1 - if it is only one element in the list it is already sorted, return.
' Step 2 - divide the list recursively into two halves until it can no more be divided.

' Step 3 - merge the smaller lists into new list in sorted order.
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s for merge sort functions. As our algorithms point out two main functions -

§ now see the pseudocode
-
ee our implementation in the same way.

ge 5o

"ﬂf rocedure mergesort( var a as array )
< pif(n“tl)I‘Eturna

works with recursion and we shall s

v“l
var 11 as array = a[@] ... a[n/2]
var 12 as array = a[n/2+1] ... a[n]
= 11 = mergesort( 11 )

12 = mergesort( 12 )

return merge( 11, 12 )
end procedure

procedure merge( var a as array, var b as array )

var c as array
while ( a and b have elements )

if ( a[e] > b[e] )
add b[@] to the end of ¢

remove b[@] from b

else
add a[@] to the end of ¢

remove a[@] from a
end if
end while

while ( a has elements )
add a[0] to the end of C

remove a[@] from a
end while

while ( b has elements )
add b[@8] to the end of ¢

remove b[@] from b
end while

return C

end procedure
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Partition in Quick Sort

Following animated representation explain an array

s how to find the pivot value in

Unsorted Array

@@@@@@@E@@

s until all lists contains only on€ element.

ursively, we find the pivot for each sub-list

The pivot value divides the listinto two parts. And rec

ithm for it, which is as follows.

Quick Sort Pivot Algorithm

gin quick sort, we will now try to write an algor

ur understanding of partitionin

Based on O
step 1 - Choose the highest index value has pivot
step 2 - Take two variables to point left and right of the list excluding pivot
Step 3 - Jeft points to the low index
Step 4 - right points to the high
step 5 - while value at left is less than pivot move right
Step 6 - while value at right is greater than pivot move left
Step 7 - if both step 5 and step 6 does not match swap left and right
step 8 - if left 2 right, the point where they met is new pivot

Quick Sort Pivot pseudocode
The pseudocode for the above algorithm can be derived as =

function partitionFunc(left, right, pivot)

leftPointer = left
rightPointer = right - 1

while True do
while A[++leftPointer] <p

//do-nothing
end while

ivot do

while rightPointer > 0 8& A[--rightPointer] > pivot do

//do-nothing
end while

if leftPointer >= rightPointer
break

else
swap leftPointer,rightPointer

end if
end while

swap leftPointer,right
return leftPointer
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step a4 - Qul

Quick Sort Pseudocode

To get more into it, let see the pseudocode for quick sort algorithm -
: procedure quickSort(left, right)

if right-left <= o

return
else

pivot = A[right]

partition = partitionFunc(left, right, pivot)

quickSort(left,partition-1)
quickSort(partition+1,right)

end if

end procedure
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