—_
] el o T . — e ——
! Dat e ;
4

\v a Structures - Merge Sort Algorithm m
13/5[%
Data :
ata Structures - Merge Sort Algorithm

Merge son i
S a sorting
) techni
most respected Y e o
. ‘ h Vi
algorithms. OE ST S tachnique. With wars
rst-case time complaxit i
xity being O(n g n), it is
3 one of the

Merge sort first s a &
; stdivides the 0 a
S ‘ a n

' may into equal halves and then combines them | :
| J nin a sorted manner

How Mer ge SOl‘t WOI’kS ? :

To understand merge soit, we take an uns -

) ¢ Insorted array as the followi
lowing
. L

We know that me
g e di
ammay of 8 items i rg‘ _SO"' 1."lrsl divides the whole array iteratively into equal halves unless the atomic values are achieved. We see here that an
} NS is divided into two arrays of size 4.
gy ——— e o f i ——— — —— ',._._' 7‘1
;Lm] 33”27’ 10 \ [35“ 19 H-az“m_
This does not change the sequence of appearance of items in the original. Now we divide these two arrays into halves.
‘f“"”'—‘“‘"—~ xf“—”w__..-‘—--\x }-“"—"-"’ — = ~,; ‘.— —
1433‘27[10‘\,35119“14244
" = -”I — & e _——A—l :~ =T e | "-:_—,T'.‘,:————,/./‘
We further divide these arrays and we achieve atomic value which can no more be divided.
f)] | e el G =3)
!it l 1!110}[135-l19“\42.-\44l
il Gl (Gl (G S R = b
hese lists.

ere broken down. Please note the color codes given to t
anner. We see that 14 and 33 are in sorted
We change the order of 19 and 35 whereas

Now, we combine them in exactly the same manner as they w
en combine them into another list in a sorted m

We first compare the element for each list and th
t list of 2 values we put 10 first, followed by 27.

positions. We compare 27 and 10 and in the targe

42 and 44 are placed sequentially.
f’""——“'-"-'——xl I‘/'-—‘—"“ "--‘—""».] | —————— — e o i \.:
‘ 331;[10 27 || |19 |l35| |42 4|
e e/ \ _r________',‘ R — —) 1§ =]

-—

e, we compare lists of two data values, and merge them into a list of found data values placing all i

In the next iteration of the combining phas
a sorted order.

=)=) ()=l

After the final merging, the list should look like this =

Bnooooos

Now we should learn some programming aspects of merge sorting.

Algorithm

Merge sort keeps on dividing the list into equal halves until it can no more be divided. By definition, if it is only one element in the lis!

sorted. Then, merge sort combines the smaller sorted lists keeping the new list sorted too.

Step 1 - if it is only one element in the list it is already sorted, return.
' Step 2 - divide the list recursively into two halves until it can no more be divided.

' Step 3 - merge the smaller lists into new list in sorted order.

Scanned with CamScanner

LD ETTOTTE S — VIETE S BUT T FTGUTTINI || ~ P pr

s for merge sort functions. As our algorithms point out two main functions -

§ now see the pseudocode
-
ee our implementation in the same way.

ge 5o

"ﬂf rocedure mergesort(var a as array)
< pif(n“tl)I‘Eturna

works with recursion and we shall s

v“l
var 11 as array = a[@] ... a[n/2]
var 12 as array = a[n/2+1] ... a[n]
= 11 = mergesort(11)

12 = mergesort(12)

return merge(11, 12)
end procedure

procedure merge(var a as array, var b as array)

var c as array
while (a and b have elements)

if (a[e] > b[e])
add b[@] to the end of ¢

remove b[@] from b

else
add a[@] to the end of ¢

remove a[@] from a
end if
end while

while (a has elements)
add a[0] to the end of C

remove a[@] from a
end while

while (b has elements)
add b[@8] to the end of ¢

remove b[@] from b
end while

return C

end procedure

I I PR O PPy T R Y=z, o it <~ 4

Scanned with CamScanner

Data Structur and Algorithms - Ouick Sort - (MMM v ¢
AR : ',/‘/’,‘.

[)('t 4 ’ |(‘)I t' Il e} (-)l”‘ll‘ .
- -

Wwoarrays Alarge Ay s e whitieined into

made and ancthar array noleds

’,l‘l)‘ SO ! ! { r
1tir Q0 t}l"l.hl“ and 8 bazed on [\Jl(»'\(‘.ﬁ']\![of ary vy of data into am I
< R are O amatie

spnisnlwqhh'ﬂm&
ﬂdy|4vn|!;n'wlun\»hhluﬂul;'uPHrN|n

Qu ick
ys ¢ ne ol W ieh holds values smi My fpecied vivu
o of h h ho! s v 3 08 smalle han the apeciiie | value

two art a

values groater than the pivot value
aubarrays This algorithrm 8 quite afficient fryr jarge

jons an array and then calls itsell recursively tw

e ieo to sort the two resulting
average and worsl-case complexity are O(nLogn) and agpactively

Quicksort partlt
ftnlarpiluvq(n)],n

sized data sets as I8

Partition in Quick Sort

Following animated representation explain an array

s how to find the pivot value in

Unsorted Array

@@@@@@@E@@

s until all lists contains only on€ element.

ursively, we find the pivot for each sub-list

The pivot value divides the listinto two parts. And rec

ithm for it, which is as follows.

Quick Sort Pivot Algorithm

gin quick sort, we will now try to write an algor

ur understanding of partitionin

Based on O
step 1 - Choose the highest index value has pivot
step 2 - Take two variables to point left and right of the list excluding pivot
Step 3 - Jeft points to the low index
Step 4 - right points to the high
step 5 - while value at left is less than pivot move right
Step 6 - while value at right is greater than pivot move left
Step 7 - if both step 5 and step 6 does not match swap left and right
step 8 - if left 2 right, the point where they met is new pivot

Quick Sort Pivot pseudocode
The pseudocode for the above algorithm can be derived as =

function partitionFunc(left, right, pivot)

leftPointer = left
rightPointer = right - 1

while True do
while A[++leftPointer] <p

//do-nothing
end while

ivot do

while rightPointer > 0 8& A[--rightPointer] > pivot do

//do-nothing
end while

if leftPointer >= rightPointer
break

else
swap leftPointer,rightPointer

end if
end while

swap leftPointer,right
return leftPointer

 roasad

Scanned with CamScanner

u HWEE Data Structure and Algorithme - Quick Sorl - m ’ .
P \\\\ ; S/ > £
fine

o N
sort Algorith™
ck ’ riton
=ach partition is then processad for quick son e o
% son 2 da

gorithm recursively, we end up with smaller possible partitions.
ot alge
4na P e srithm for q

ve ale
Gake the right-most index value pivot

uicksorl as follows =

pecurs!
S(N“ ; partition the array using pivot value
quicksort left partition recursively

tep =
3 -

tep - i i

step icksort right partition recursively

step a4 - Qul

Quick Sort Pseudocode

To get more into it, let see the pseudocode for quick sort algorithm -
: procedure quickSort(left, right)

if right-left <= o

return
else

pivot = A[right]

partition = partitionFunc(left, right, pivot)

quickSort(left,partition-1)
quickSort(partition+1,right)

end if

end procedure
—tnar P Aer .40 s An .o O MO B i o oS AT P? | A O G

Scanned with CamScanner

