
Data Transfer Schemes

 Page 1 of 6

 Data between the µP and I/O devices is transferred according to schemes that may fall

into one of the following categories:

 1. Programmed data transfer, and

 2. Direct memory access memory transfer.

 Programmed data transfers are generally used when a relatively small amount of

data is transferred using relatively slow I/O devices, e.g. some A/D, D/A converters. In these

schemes, usually one byte or word of data is transferred at a time. When a large block of data is

to be transferred, DMA is used. DMA is used for transferring data from peripheral mass storage

devices like a hard disk or a high-speed line printer.

 Programmed data transfer can be further classified as:

 1. Synchronous transfer,

 2. Asynchronous transfer (or handshaking),

 3. Interrupt driven transfer.

 All these schemes require both hardware and software for their implementation.

Within a µC, more than one scheme can be used for interfacing various I/O devices.

Programmed Data Transfer -- Synchronous Mode

 This is the simplest of all the data transfer schemes. Synchronous mode of data transfer is

used for I/O devices whose timing characteristics are precisely known, or fast enough to be

compatible in speed with the communicating MPU. Whenever data is to be obtained from the

device, or transferred to the device, the user program may issue a suitable instruction for the

device. At the end of the execution of this instruction, the transfer would have been completed.

Thus, if an output device is connected to the 8085 in the memory mapped mode, the instruction

MOV M, A may be used for transferring ACC contents to the device, assuming that the address

of the device is already stored in the HL register pair. If the device is connected in I/O mapped

mode, then the OUT instruction may be issued. The flowchart for this mode is shown in fig 1(a).

 The synchronous mode can also be applied to slow I/O devices, if the timing

characteristics of these devices are precisely known. In this case the data transfer is initiated by

requesting the I/O device to get ready and hen the MPU waits for some predetermined time,

usually by generating a delay, and then executes the I/O instruction to complete the data

transfer. The flowchart is shown in fig 1(b).

R.BALA BHASKAR

Data Transfer Schemes

 Page 2 of 6

Fig 1: Flowchart for the synchronous mode of data transfer:

a) Speed compatible with MPU b) I/O with known speed characteristics

Start

Execute I/O
Instructions

Stop

Start

Send get ready
signal to the I/O

device

Generate Delay

Execute I/O
instructions

Stop

Programmed Data Transfer - Asynchronous Mode

 When the I/O device speed and µp speed do not match, asynchronous mode may be used.

The key feature of this mode is that, the MPU initiates data transfer by requesting the device to

get ready and then goes on checking its status. The I/O instruction is executed only when the I/O

device is ready to accept or supply data. So each data transfer is preceded by a ‘request ready’

signal generated by the MPU and an acknowledgement signal issued by the I/O device. The

method is known as handshaking mode of data transfer, as it resembles the back-and-forth

movement of hands involved in handshaking, to coordinate the data transfer. The flowchart for

this mode of data transfer is shown in fig 2

 The asynchronous mode is ideal for reconciling the timing differences between the MPU

and I/O devices. However, an important disadvantage is that a lot of precious MPU time is

wasted during the looping to check the I/O device status. The wastage of the MPU time may be

prohibitive or impractical in many situations.

R.BALA BHASKAR

Data Transfer Schemes

 Page 3 of 6

Algorithm

 begin

 issue instruction to the device to get ready;

 repeat

 test device ready flag;

 until device ready flag;

 issue instructions to transfer data;

 end

Fig 2: Flowchart for the asynchronous mode of data transfer

Start

Send get ready
signal to the I/O

device

Is the
device
ready?

Execute I/O
instructions

Stop

Yes
No

Programmed Data transfer -- Interrupt driven Mode

 To overcome the drawbacks of the synchronous and asynchronous modes of data

transfer, another programmed data transfer called Interrupt driven mode has been designed. The

basic idea of this mode is that, the processor initiates the data by requesting the device ‘to get

ready’ and then goes on executing its original program instead of wasting its time by

continuously monitoring the status of the I/O device. When the device is ready to accept or

supply data, it informs the processor through some special control line known as interrupt line.

In response to this, the processor completes the execution current instruction. Then, instead of

executing the next instruction, it saves the PC (and other registers as determined by the

R.BALA BHASKAR

Data Transfer Schemes

 Page 4 of 6

architecture of the MPU) in stack and branches to a predetermined location, which is the starting

address of a subroutine called interrupt service subroutine (ISS). The ISS saves the processor

status on the stack, completes the data transfer with the I/O responsible for interrupt, restores the

processor status and then returns to the original program that the MPU was executing prior to

the interrupt. Fig 3 shows the flowchart of this mode of data transfer.

 In this mode, the time needed by the I/O device to get ready after receiving the ‘get

ready’ is utilized by the MPU. However, the MPU incurs some overhead in storing and restoring

the processor status to and from the stack.

Fig 3 Data transfer in interrupt driven mode

Start

Send get ready
signal to the I/O

Fetch and execute
next instruction

Is the
interrupt

line high?

Save PC in stack and jump
to ISS starting address

Start ISS

Push processor status on stack

Execute I/O instructions

Restore processor status

Return

DMA mode of data transfer
 For any MPU, there are instructions for data transfer from memory or I/O device to the

MPU registers and vice versa. But there does not exist any instruction for data transfer between

R.BALA BHASKAR

Data Transfer Schemes

 Page 5 of 6

memory and I/O devices directly. So, using any one of the programmed I/O modes, data transfer

between memory and I/O devices can be done in two steps using one of the MPU registers

(usually the accumulator) as via-media. This makes the programmed I/O data transfer modes

inherently slow. If a large block of data is to be transferred between memory and a fast I/O

device, the overhead incurred may be prohibitive. The direct memory access (DMA) mode has

been designed to overcome this problem. The main idea underlying this method is that, the MPU

is dissociated from the data transfer process by tristating its system bus. A direct link is

established between the memory and I/O device, and an external circuit known as DMA

controller controls data transfer. Here, the data transfer rate is only limited by the minimum

speed of either of the two devices. However, to facilitate DMA mode of data transfer, the MPU

must be equipped with the following features:

1. An input control line, through which the I/O device, via the DMA controller, requests

the MPU for DMA data transfer.

2. An output control line, through which the MPU informs the DMA grant.

3. The MPU must be able to tristate the address, data and necessary control lines

throughout the DMA data transfer duration.

 Almost all the MPUs provide these features. The DMA controller must also perform the

following functions:

 1. Interface the MPU buses with the I/O device.

 2. Generate DMA request signal.

 3. In response to the DMA grant signal from the MPU, it must control the address

bus and the control lines needed fro data transfer.

 4. It must hold the information about the number of bytes to be transferred, along with

starting address of the data in memory, so that it can sequentially generate the RAM address one

by one and can withdraw the DMA request when the last byte of data transfer is over.

 The sequence of events the take place is shown by the flow diagram of fig 4. Two

different types of DMA transfer are possible. In the first case, once initiated, the data transfer

process does not stop until the complete block is transferred. Therefore, this is known as the

block DMA mode. If, however, the MPU cannot be kept inactive for the long duration needed to

transfer the complete block of data, or there is significant delay between the consecutive data,

R.BALA BHASKAR

Data Transfer Schemes

 Page 6 of 6

the other scheme known as the cycle stealing DMA mode can be used. In this case, one or two

bytes of data are transferred on being granted the DMA by the MPU, and then withdraw the

DMA request. After certain time the DMA controller interrupts the MPU, indicating the end of

the DMA.

Fig 4. Flowchart of the data transfer in DMA mode

Start

Initialize DMA request

Fetch and execute
the next instruction

Is DMA
request
active?

Generate DMA grant
signal and tristate buses

I/O device gets ready and
sends DMA request to the

DMA controller

DMA controller sends DMA
request to the MPU

Data transfer in DMA mode
continues till the assigned

block is transferred and then
the DMA controller

withdraws the DMA request

 Signifies hardware control transfer

R.BALA BHASKAR

