Because JavaScript code can run locally in a user's browser (rather than on a remote
server) it can respond to user actions quickly, making an application feel more
responsive. Furthermore, JavaScript code can detect user actions which HTML alone
cannot, such as individual keystrokes. Applications such as Gmail take advantage of this:
much of the user-interface logic is written in JavaScript, and JavaScript dispatches
requests for information (such as the content of an e-mail message) to the server. The
wider trend of Ajax programming similarly exploits this strength.

A JavaScript engine (also known as JavaScript interpreter or JavaScript implementation)
is an interpreter that interprets JavaScript source code and executes the script
accordingly. The first ever JavaScript engine was created by Brendan Eich at Netscape
Communications Corporation, for the Netscape Navigator web browser. The engine,
code-named SpiderMonkey, is implemented in C. It has since been updated (in JavaScript
1.5) to conform to ECMA-262 Edition 3. The Rhino engine, created primarily by Norris
Boyd (formerly of Netscape; now at Google) is a JavaScript implementation in Java.
Rhino, like SpiderMonkey, is ECMA-262 Edition 3 compliant.

JavaScript and Java

A common misconception is that JavaScript is similar or closely related to Java; this is
not so. Both have a C-like syntax, are object-oriented, are typically sandboxed and are
widely used in client-side Web applications, but the similarities end there. Java has static
typing: JavaScript's typing is dynamic (meaning a variable can hold an object of any type
and cannot be restricted). Java is loaded from compiled bytecode; JavaScript is loaded as
human-readable code. C is their last common ancestor language.

Nonetheless, JavaScripl was designed with Java's syntax and standard library in mind. In
particular, all Java keywords are reserved in JavaScript, JavaScript's standard library
follows Java's naming conventions, and JavaScript's Math and Date classes are based on
those from Java 1.0.

Conditional statements are used to perform different actions based on different
conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for different
decisions. You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

« if statement - use this statement to execute some code only if a specified
condition is true

o if...else statement - use this statement to execute some code if the condition is
true and another code if the condition is false

Scanned with CamScanner

o if...else if....else statement - use this statement to select one of many blocks of
code to be executed

« switch statement - use this statement to select one of many blocks of code to be
executed

If Statement
Use the if statement to execute some code only if a specified condition is true.
Syntax

if (condition)

(

code to be executed if condition is true

}

Example

<script type="text/javascript">
//Write a "Good morning" greeting if
//the time 1s less than 10

var d=new Date();
var time=d.getHours();

if (time<10)
{

document.write("Good moming");

}

</script>
If...else Statement

Use the if....clse statement to execute some code if a condition is true and another code if
the condition is not true.

Syntax

if (condition)

{

code to be executed if condition is true

}

else

Scanned with CamScanner

code to be executed if condition is not true

}

Example

<script type="text/javascript">
//1f the time is less than 10, you will get a "Good morning” greeting.
//Otherwise you will get a "Good day" greeting.

var d = new Date();
var time = d.getHours();

if (time < 10)

(

document.write("Good moming!");

}

else

document.write("Good day!");

)

</script>

If...else if...else Statement
Use the if....else if...else statement to select one of several blocks of code to be executed.
Syntax

if (condition]1)

{

code to be executed if conditionl is true

}

else if (condition2)

code to be executed if condition? is true

}

else

{

code to be executed if conditionl and condition2 are not true

}
Example

<script type="text/javascript">
var d = new Date()
var time = d.getHours()

Scanned with CamScanner

if (time<10)
{

document.write("Good morning");

}
else if (time>10 & & time<16)

(
document.write("Good day");
}

else

{
document.write("Hello World!");

}
</script>

The JavaScript Switch Statement
Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch(n)
{
case :
execute code block 1
break;
case 2:
execute code block 2
break;
default:
code to be executed if n is different from case 1 and 2

}

This is how it works: First we have a single expression n (most often a variable), that is
evaluated once. The value of the expression is then compared with the values for each
case in the structure. If there is a match, the block of code associated with that case is
executed. Use break to prevent the code from running into the next case automatically.

Example

<script type="text/javascript">

/IYou will receive a different greeting based
/lon what day it is. Note that Sunday=0,
//Monday=1, Tuesday=2, elc.

var d=new Date();

Scanned with CamScanner

theDay=d.getDay();

switch (theDay)

{

case 5:
document.write("Finally Friday"),
break;

case 6:
document.write("Super Saturday");
break;

case O:
document.write("Sleepy Sunday”);
break;

default:
document.write("I'm looking forward to this weekend!");

}

</script>

Alert Box

An alert box is often used if you want to make sure information comes through to the
user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax
alert("sometext");

Example

<htmI>

<head>

<script type="text/javascript">
function show_alert()

{

alert("I am an alert box!");

}
</script>

</head>
<body>

<input type="button" onclick="show_alert()" value="Show alert box" />

</body>
</html>

Scanned with CamScanner

Confirm Box

A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either "OK" or "Cancel" to
proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel”, the box returns
false.

Syntax
confirm("sometext");

Example

<html>
<head>
<script type="text/javascript">
function show_confirm()
{
var r=confirm("Press a button");
if (r==true)
{

document.write("You pressed OK!");

J

else

{

document.write("You pressed Cancel!");

}

}
</script>

</head>
<body>
<input type="button" onclick="show_confirm()" value="Show confirm box" />

</body>
</html>

Prompt Box

A prompt box is often used if you want the user to input a value before entering a page.

Scanned with CamScanner

How to Define a Function
Syntax

function functionname(varl,var2,...,varX)
{

some code

}

The parameters varl, var2, etc. are variables or values passed into the function. The { and
the) defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the function
name.

Note: Do not forget about the importance of capitals in JavaScript! The word function
must be written in lowercase letters, otherwise a JavaScript error occurs! Also note that
you must call a function with the exact same capitals as in the function name.

Example

<html>

<head>

<script type="text/javascript">
function displaymessage()

{
alert("Hello World!");

}
</script>
</head>

<body>
<form>
<input type="button" value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>

If the line: alert("Hello world!!") in the example above had not been put within a
function, it would have been executed as soon as the line was loaded. Now, the script is
not executed before a user hits the input button. The function displaymessage() will be
executed if the input button is clicked.

Scanned with CamScanner

The return Statement

The return statement is used to specify the value that is returned from the function.
So, functions that are going to return a value must use the return statement.

The example below returns the product of two numbers (a and b):

Example

<html>

<head>

<script type="text/javascript">
function product (a,b)

{

return a*b;
}

</script>
</head>

<body>

<script type="text/javascript">
document.write(product(4,3));
</script>

</body>
</html>

Loops execute a block of code a specified number of times, or while a specified
condition is true.

JavaScript Loops

Often when you write code, you want the same block of code to run over and over again
in a row. Instead of adding several almost equal lines in a script we can use loops to
perform a task like this.

In JavaScript, there are two different kinds of loops:

e for - loops through a block of code a specified number of times
« while - loops through a block of code while a specified condition is true

Scanned with CamScanner

