Example: Servlet Which Destroy Session.
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LogoutController extends HttpServiet

|
protected void doPost(HttpServietRequest request,

HttpServiletResponse response)
Throws ServietException, IOException

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.printin("Thank You. Session was destroyed successfully!!");
HttpSession session = request.getSession(false);

synchronized (session)

A

session.setAttribute("user"”, null);
session.removeAttribute("user");
session.getMaxInactivelnterval();
session.invalidate();

by

MVC (Model View Controller)

MVC stands for Model View and Controller. It is a design pattern that separates
the business logic and data access layers from the presentation layer.

Controller: Controller is a Servlet that acts as an interface between View and
Model. Controller intercepts all the incoming requests.

Model: Model is a Java Bean which represents the state of the application i.e.
data. It can also have business logic.

View: View is a JSP page which represents the presentation or User Interface.
Steps required to Implement MVC

1. Define beans to represent the data of application.

2. Use a Servlet to handle requests from clients.

6

3. Populate the beans by placing result obtained from accessing business logic
and data access code in the beans.

4. Store the bean either in the request, session or Servlet context (application).

Scanned with CamScanner

5. Forward the request to a JSP Page using forward method of RequestDispetcher
interface or sendRedirect method of HttpServietResponse interface.

6. Extract data from the beans by accessing beans from JSP page using
<jsp:useBean> and <jsp:getproperty> tags of JSP.

Http Client | Controller T TN
(HTML Page) "I (serviet) R
Database
v
View 1| Model
(JSP) "| (JQava Beans)

MVC Example in JSP

In this example, we are using Servlet as a controller, JSP as a view component,
Java Bean class as a model.

In this example, we have created following pages:

index.jsp a page that gets input from the user.

ControllerServlet.java a Servlet that acts as a controller.
login-success.jsp and login-error.jsp files acts as view components.

Example: Login.html

<form action="ControllerServilet" method="post"> Name:<input
type="text" name="name">
 Password: <input
type="password" name="password">
 <input
type="submit" value="login">

</form>

Example: Controller Servlet

Scanned with CamScanner

import java.io.*;
import javax.servlet.http.*;
import javax.servlet.*;

public class ControllerServlet extends HttpServlet

{

protected void doPost(HttpServietRequest request, HttpServietResponse
response)

throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out=response.getWriter();

String name = request.getParameter("name"); String
password = request.getParameter("password");

LoginBean bean = new LoginBean();
bean.setName(name);
bean.setPassword(password);
request.setAttribute("bean”, bean);
boolean status = bean.validate();

RequestDispatcher rd = null;

if(status) {

rd = request.getRequestDispatcher("login-
success.jsp"); rd.forward(request, response);

g
else {
rd=request.getRequestDispatcher("login-
error.jsp"); rd.forward(request, response);
by
b
protected void doGet(HttpServietRequest req, HttpServietResponse
resp) throws ServletException, IOException
{
doPost(req, resp);
b
b

File: LoginBean.java

public class LoginBean

{

Scanned with CamScanner

private String name, password;

public String getName() {
return name;

b

public void setName(String name) {
this.name = name;

b

public String getPassword() {
return password;

b

public void setPassword(String password) {
this.password = password;

b
public boolean validate()
%
if(password.equals("admin"))
return true;
else
return false;
b

b

File: login-success.jsp

<%@page import = "LoginBean" %>

<p>You are successfully logged in!</p>

<%
LoginBean bean=(LoginBean)request.getAttribute("bean");
out.print("Welcome, "+bean.getName());

%>

File: login-error.jsp

<p>Sorry! User Name or Password Error</p>
<%@ include file="Login.htm!" %>
Advantages of MVC

1. Faster and parallel development process.
2. MVC Application is device independent.

3. Easy to maintain the large application.

Scanned with CamScanner

> g LA D

Support for asynchronous technique of development.
Modification does not affect the entire model.
MVC model returns the data without formatting.

reuse.

Disadvantages of MVC

1

2
3
4

. Increased complexity and Need multiple programmers.
. Inefficiency of data access in view.

. Difficulty of using MVC with modern user interface.

. Knowledge on multiple technologies is required.

MVC makes the overall code much easier to maintain, test, debug, and

Scanned with CamScanner

