Stacks and Queues

Fundamental “abstract” data types
e we think of them conceptually in terms of their interface and functionality

e we use them as building blocks in problems without pinning down an
implementation (the implementation may vary)

Interface:

e Stacks and Queues handle a collection of elements

e Operations:

e insert(e)
e remove()
o isEmpty()
e getSize()
" Stacks K Queues E
e only last element can be deleted e only first element can be deleted
¢ ==>insert and delete at one end e =x>insert at one end, delete at other
e last-in-first-out (LIFO) o first-in-first-out (FIFO) 3

8 A J

Scanned with CamScanner

Stack analogy

L N LW | MNEEE 3 TEN B TR
o
4 W
L.
Ccam-.p ol @ stack of Arescan oo Ciciea-o@ =l wiscaa of owmoghd pecea Cose-up of & viach of ooy Coaw-as ol @ sack of imalbooss Thopacse ard Yiscsa ol Wi Boass
Erpcutyyin Priotod SipcktyTa Pnobos S trte Phoins OO0 Kby TE Proin Brarad X Paivas
PRICE i 80 PRICE { IO FRICE / IWFD FRICE J IRFQ FRICE /™0 FRICE / 1410
Add iz Lghizas dgs bo Lghitan Add fia Lighftcx Lid f= Lgribos Rgd b= Lghikas ddd ko Lgralias
AF Boyally Fres RF Regaity Fres EF Rayalty Fros RF Royafy Fras AF Boyafy Fres RF Reyalty Froa

J
Lag® wisos zf e m=dl ma Tasm-wz al 8 slack of Srrmrcan cams Cizsg-uz of nlmcia of draaghl pecan Chzas-un ol @ slack of malbaoas P8 sww po¥md ol 3op ocng dacs Paca of bals sponpas
Jig Chasse Fhoto i kirgin Phobos Srociinie Phocos Sinc kv Pooios o barka [10:41] BEaransBipck Phooos
g - e
FRICE /80 PRICE / NFO FRICE ! IHFO FRICE /IRFD 2k Byt Pt FRICE 7 INFO
Azl bz Lgnikas Agds ko Lghitaa Add = Ligheca Add b=z Lghiaas FRICE /i G #dd ko Lgiltas
R Boyally Frid BF Rsyaity Frid AF Royalty Fras HF Rayaly Frad A W Lo RF Hayaly Frivd

AF Rayaly Froa

Stack interface

push(e) : insert element e (at top of stack)
pop() : delete and return the top of stack (last inserted element)
size(): return the number of elements in the queue

iSEmpty(): return true if queue is empty

Scanned with CamScanner

Queue Analogy

Queue interface

enqueue(e): insert element e (at end of queue)

dequeue(): delete and return the front of queue (the first inserted element)

size(): return the number of elements in the queue

ISEmpty(): refturn true if queue is empty

Scanned with CamScanner

Applications

Are stacks and queues useful?

® YES. They come up all the time.

Stacks

¢ Web browsers store the addresses of recently visited sites on a stack

Each time the visits a new site ==> pushed on the stack. Browsers allow to “"pop” back to
previously visited site.

undo-mechanism in an editor

The changes are kept in a stack. When the user presses "undo” the stack of changes is popped.

function-call mechanism

the active (called but not completed) functions are kept on a stack
each time a function is called, a new frame describing its context is pushed onto the stack

the context of a method: its parameters, local variables, what needs to be returned, and
where to return (the instruction to be executed upon return)

when the function returns, its frame is popped, the context is reset to the previous method
(now on top of the stack) and teh program continues by executing the previously suspended

method
6

Scanned with CamScanner

Applications

Are stacks and queues useful?

® YES. They come up all the time.

Queues

* Queue of processes waiting to be processed

® for e.g. the queue of processes to be scheduled on the CPU.

e the process at front is dequeued and processed. New processes are added at the end of the
queue.

® Round-robin scheduling: iterate through a set of processes in a circular manner
and service each element:

e the process at front is dequeued, allowed to run for some CPU cycles, and then enqueued at
the end of the queue

Scanned with CamScanner

Using Stacks

java.util.Stack

Constructor Summary

Stack()
Creates an empty Stack.

Method Summary

boolean |empty ()
Tests if this stack is empty.

Object |peek()
Looks at the object at the top of this stack without removing it from the stack.

object |pop()
Removes the object at the top of this stack and returns that object as the value of this function.

Object |push (Obiect item)
Pushes an item onto the top of this stack.

int|search(Object o)
Rewms the 1-based positon where an object is on this stack.

Scanned with CamScanner

Using Stacks

import java.util.Stack;

//a stack of integers
Stack<Integer> st = new Stack<Integer>();

st.push (Integer(3))

a8

st.push (Integer(5))

-

st.push (Integer(2));
//print the top
System.out.print(st.peek()):;
st.pop();

st.pop():

st.pop();

//a stack of Strings

Stack<String> st = new Stack<String>():

Scanned with CamScanner

Using Stacks

import java.util.Stack;

//a stack of integers

Stﬂcst = new Stack<Integer>():;

st.push (Integer(3))

-

st.push (Integer(5))
st.push (Integer(2));
//print the top generic type
System.out.print(st.peek()):;

st.pop(): class Stack uses generics

st.pop();
st.pop();

//a stack of Strings

Stack<String> st = new Stack<String>():

LI I]

10

Scanned with CamScanner

Stacks

a Stack can contain elements of arbitrary type E

Use generics: define Stack in terms of a generic element type E

Stack<E> {
}i-

When instantiating Stack, specify E

Stack<String> st;

Note: could use Object, but then need to cast every pop()

11

Scanned with CamScanner

Implementing a Stack

A Stack interface
Implementing a Stack with arrays
Implementing a Stack with linked lists

Analysis, comparison

12

Scanned with CamScanner

[**

* Interface for a stack: a collection of objects that are inserted
* and removed according to the last-in first-out principle. This
* interface includes the main methods of java.util.Stack.
* [/

public interface Stack<E> {

,i"**

* Return the number of elements in the stack.

* @return number of elements in the stack.

* [/

public int size();

‘f*ir

* Return whether the stack is empty.

* @return true 1f the stack is empty, false otherwise.
*/

public boolean isEmpty();
f*ir

* Inspect the element at the top of the stack.

* @return top element in the stack.

* @fexception EmptyStackException if the stack is empty.
*./

public E top()

throws EmptyStackException;

J **

* Insert an element at the top of the stack.

* fparam element to be inserted.

*/

public void push (E element);
S **

* Remove the top element from the stack.

* @return element removed.

* fexception EmptyStackException if the stack is empty.
*/

public E pop()

throws EmptyStackException; I3

Scanned with CamScanner

Implementing a Stack

Stacks can be implemented efficiently with both
® arrays

e |inked lists

Array implementation of a Stack

2 |4 5 |6

i

Linked-list implementation of a Stack

top of stack

® a linked list provides fast inserts and deletes at head

e ==> keep top of stack at front

5 2

Scanned with CamScanner

Implementing Stacks

Exercise: Sketch each implementation

public class StackWithArray<E> implements Stack ({

Efficiency ?

Compare ?

15

Scanned with CamScanner

Array
e simple and efficient Method Time
e assume a fixed capacity for array size() O(1)
e if CAP is too small, can reallocate, but expensive
e if CAP is too large, space waste IsEmpty() O(1)
top O(1)
Lists push O(1)
® no Ssize limitation
pop O(1)
e extra space per element
Summary:

Stack: Arrays vs Linked-List Implementations

when know the max. number of element, use arrays

16

Scanned with CamScanner

Implementing a Queue

A Queue interface
Implementing a Queue with arrays
Implementing a Queue with linked lists

Analysis, comparison

17

Scanned with CamScanner

A Queue Interface

public interface Queue<E> {

’.f*i-

* Returns the number of elements in the gueue.

* @return number of elements 1in the queue.

*/

public int size();

’.f*t

* Returns whether the gueue is empty.

* @return true 1f the gqueue is empty, false otherwise.
*/

public boolean i1sEmpty();

’.f*t

* Inspects the element at the front of the gueue.

* @return element at the front of the gueue.

* Bexception EmptyQueueException if the gueue is empty.
* [

public E front() throws EmptyQueueException;
[**x

* Tnserts an element at the rear of the queue.

* fparam element new element to be inserted.

*/f

public void engueue (E element);

[* ok

* Removes the element at the front of the gueue.

* freturn element removed.

* fexception EmptyQueueException if the gqueue is empty.
*/

public E dequeue() throws EmptyQueueException; 18

Scanned with CamScanner

Queue Implementations

Queue with arrays
e say we insert at front and delete at end

¢ need to shift elements on inserts ==> insert not O(1)

Queue with linked-list

® in a singly linked-list can delete at front and insert at end in O(1)

front of list . . . o tail of list

e Exercise: sketch implementations

® Analysis?

19

Scanned with CamScanner

Queue Implementations

Queue with arrays

e need to shift elements on inserts ==> insert not O(1)

Queue with linked-list

front ﬂflif‘:\. Al of list
2 4 5

Method Time
si1ze() O(1)
isEmpty() O(1)
front O(1)
enqueue . O(1)
dequeue O(1)

20

Scanned with CamScanner

Queue with a Circular Array

A queue can be implemented efficiently with a circular array if we know the

maximum number of elements in the queue at any time

dequeue enqueue

enqueue dequeue

141516 10 | 11

12

13

Exercise: sketch implementation

21

Scanned with CamScanner

