Data Structure - Bubble Sorl Algorithm - | ey M ead
L

A
N
Data Structure - Bubble Sort Algorithm

Bubble sor is a simple sorling algorithm. This sorting algorithm Is comparison-based algorithm in which e
compared and the elements are swapped If they are not in order. This algorithm is not suitabla for large d
case complexity are of O(n?) where n is the number of items.

ach pair of

adjace
ot adjacen elements s

a sets as it average and worst

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes O(n?) time so we're keeping it short and precise,

panen

Bubble sort starts with very first two elements, comparing them to check which one is greater.

()l][]

In this case, value 33 is greater than 14, so it is already in sorted locations, Next, we compare 33 with 27.

(el o=

We find that 27 is smaller than 33 and these two values must be swapped.

Oooon '

The new array should look like this —

()=)=)=o)

Next we compare 33 and 35. We find that both are in already sorted positions.

ppoon

Then we move to the next two values, 35 and 10.

e [l

We know then that 10 is smaller 35, Hence they are not sorted.

(e ll= =]

We swap these values. We find that we have reached the end of the array. After one iteration, the array should look like this =

bJ==-)=

To be precise, we are now showing how an array should look like after each iteration. After the second iteration. it should look like this -

L)z ‘ﬂt";h s |
= e) Sl ;_NJ,
Al~tinra that aftar aach iteration. at least one value moves at tha ann

Scanned with CamScanner

B ———— e

Dala Stcture - Bubble Sort Algorithm —

- Sy ey
/2120 l 14 | W I |
o] [)

\
\ andwhen there's no swap required, bubble &)
softs learns that an aray ia complotely sortad
10 \ 1 Il 2 [25 |
» I 41 27 ' 3|95 l
r Now we should look into some practical aspects of bubble sort

Algorithm
We assume list i
tis an array of n elements. We further assume that swap function swaps the values of the given array elements

begin BubdleSort(list)

for all elements of list
i list[i] > list[i+1)
swap(list[i], list[i+1])
end if
end for

return list

end BubbleSort

Pseudocode
whole array is completely sorted in an ascending

ares each pair of array element unless the :
as all the elements are already ascending.

more swapping
y swap has happened or not. If no swa

We observe in algorithm that Bubble Sort comp:
order. This may cause a few complexity issues like what if the array needs no
p has occurred.

one flag variable swapped which will help us see if an

To ease-out the issue, we use
me out of the loop.

i.e. the array requires no more processing to be sorted, it will col

Pseudocode of BubbleSort algorithm can be written as follows —

procedure bubbleSort(list : array of items)
loop = list.count;

for i = @ to loop-1 do:
swapped = false

for j = @ to loop-1 do:

/* compare the adjocent elements */
if list[]] > list[j+1] then
/* swap them */
swap(list[j], list[j+1])
swapped = true
end if

end for

/*1f no number was swapped that means
array 1s sorted now, break the Loop.*/

if(not swapped) then
break
end if

end for

end procedure return list

Implementation

One more issue we did not address in our original algorithm and its improvised pseudocode, is that, after every iteration the highest values
settles down at the end of the array. Hence, the next iteration need not include already sorted elements. For this purpose, in our
implemen!ation. we restrict the inner loop to avoid already sorted values.

\ . care mbancwa st bokeaace

Scanned with CamScanner

—

B
i

< "

Data ;
Structure and Algorithms Selection Sort TNy ’ "
2 P a ke Dn
. papele

5/712020
Data Structure and Algorithms Selection Sort

selection sort is a simple sorling al
algorithm, i
This sorting algorithm is an in-place comparison-based algorith
’ arnson-based algorithm in which the list is divided into

two parts. the sorted pdﬂ at the loﬂ d
end an o unsorted
enti list. th sorte [)dﬂ at the li(]ht end. Illllld“y the sorted part | t
t st ' 20 partis emply a d the unsorted pan is the

The smallest element is s
elected from m
aoried artay. This process cont U?e unsorted array and swapped with the leftmost element ‘| m
rra nlinues moving unsorted array boundary by one element to tﬁe" ht FREEEEEE
right.

This algorithm is not sui
uitable for lar
ge data sets as its average and worst case complexities are of 0(n?), where n is the number of items.

|
“

How Selection Sort Works?

Consider the following depicted array as an example.

DoEnnnnn

st position where 14 is stored presently, W

For the first position in the sorted list, the whole list is scanned sequentially. The fir el
whole list and find that 10 is the lowest value.

44 :v
)
in the list, appears in the first position of

eration 10, which happens to be the minimum value the sorted

EEEEER

So we replace 14 with 10. After one it
list.

For the second position, where 33 is residing, we start scanning the rest of the list in a linear manner.

“10“33”27“14“35 “19 H 42\5‘44‘1
pear at the second place. We swap these values.

We find that 14 is the second lowest value in the list and it should ap

are positioned at the beginning in a sorted manner.

EEE e

plied to the rest of the items in the array.

After two iterations, two least values

The same process is ap

Following is a pictorial depiction of the entire sorting process —

Scanned with CamScanner

e

Data Structure and Algorithms Selection Sort . # e
i[B (S
|1_0 I[M 27 H 33] as H 19 H42 ” 44]

()0 |9 0)67)

()0)8 o0]][) o)

(o)) 0) 8))]

()G (] e) e) o).

()0 oo e oe J o))
|

BRnn

EEEEEE)
CEEEEEEE

Now, let us learn some programming aspects of selection sort.

Algorithm

Step 1 - Set MIN to location ©

Step 2 - Search the minimum element in the list
Step 3 - Swap with value at location MIN

Step 4 - Increment MIN to point to next element
Step 5 - Repeat until list is sorted

Pseudocode

procedure selection sort
list : array of items
n : size of list

for i=1ton-1
/* set current element as minimum*/
min = 1

/* check the element to be minimum */

for j = i+1 ton
if list[j] < list[min] then
min = j;
end if
end for

/* swap the minimum element with the current element*/
if indexMin != i then

swap list[min] and list[i]
end if
end for

end procedure

Scanned with CamScanner

