The return Statement

The return statement is used to specify the value that is returned from the function.
So, functions that are going to return a value must use the return statement.

The example below returns the product of two numbers (a and b):

Example

<html>

<head>

<script type="text/javascript">
function product (a,b)

{

return a*b;
}

</script>
</head>

<body>

<script type="text/javascript">
document.write(product(4,3));
</script>

</body>
</html>

Loops execute a block of code a specified number of times, or while a specified
condition is true.

JavaScript Loops

Often when you write code, you want the same block of code to run over and over again
in a row. Instead of adding several almost equal lines in a script we can use loops to
perform a task like this.

In JavaScript, there are two different kinds of loops:

e for - loops through a block of code a specified number of times
« while - loops through a block of code while a specified condition is true

Scanned with CamScanner

The for Loop
The for loop is used when you know in advance how many times the script should run.

Syntax

for (var=startvalue;var<=endvalue;var=var+increment)

{

code to be executed

}
Example

The example below defines a loop that starts with i=0. The loop will continue to run as
long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

<html>

<body>

<script type="text/javascript">
var 1=0;

for (i=0;i<=5;i++)

{

document.write("The number is " + 1);
document.write("
");

}
</script>
</body>
</html>

The while Loop

The while loop loops through a block of code while a specified condition is true.
Syntax

while (var<=endvalue)

(

code to be execuled

)

Note: The <= could be any comparing statement.

Scanned with CamScanner

Example

The example below defines a loop that starts with i=0. The loop will continue to run as
long as i is less than, or equal to 5. i will increase by 1 each time the loop runs:

<html>
<body>
<script type="text/javascript">
var 1=0;
while (i<=5)
{
document.write("The number is " + i);
document.write("
");
1++;
}
</script>
</body>
</html>

The do...while Loop

The do...while loop is a variant of the while loop. This loop will execute the block of
code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax

do
{

code to be executed

}

while (var<=endvalue);

Example

The example below uses a do...while loop. The do...while loop will always be executed at
least once, even if the condition is false, because the statements are executed before the
condition is tested:

<html>
<body>
<script type="text/javascript">
var 1=0;
do
(

Scanned with CamScanner

document.write("The number is " + 1);
document.write("
");
i1++;
}
while (i<=5);
</script>
</body>
</html>

The break Statement

The break statement will break the loop and continue executing the code that follows
after the loop (if any).

Example

<html>
<body>
<script type="text/javascript">
var 1=0;
for (i=0;i<=10;i++)
{
if (i==3)
{
break;
}
document.write("The number is " + 1);
document.write("
");

)

</script>
</body>
</html>

The continue Statement
The continue statement will break the current loop and continue with the next value.
Example

<html>
<body>
<script type="text/javascript">
var i=0
for (i=0;i<=10;i++)
{
if (1==3)

Scanned with CamScanner

{

continue;

}

document.write("The number is " + 1);
document.write("
");

}
</script>
</body>
</html>

JavaScript For...In Statement

The for...in statement loops through the elements of an array or through the properties of
an object.

Syntax

for (variable in object)

{

code to be executed

}

Note: The code in the body of the for..in loop is executed once for each
element/property.

Note: The variable argument can be a named variable, an array element, or a property of
an object.

Example
Use the for...in statement to loop through an array:

<html>
<body>

<script type="text/javascript">
var X,

var mycars = new Array();
mycars[(0] = "Saab",;

mycars = "Volvo";

mycars = "BMW",

for (x in mycars)

{

document.write(mycars[x] + "
");

}

Scanned with CamScanner

</script>

</body>
</html>

JavaScript is an Object Oriented Programming (OOP) language.

Object Oriented Programming

JavaScript is an Object Oriented Programming (OOP) language. An OOP language
allows you to define your own objects and make your own variable types.

However, creating your own objects will be explained later, in the Advanced JavaScript
section. We will start by looking at the built-in JavaScript objects, and how they are used.
The next pages will explain each built-in JavaScript object in detail.

Note that an object is just a special kind of data. An object has properties and methods.
Properties

Properties are the values associated with an object.

In the following example we are using the length property of the String object to return
the number of characters in a string:

<script type="text/javascript">
var txt="Hello World!";
document.write(txt.length);
</script>

Methods
Methods are the actions that can be performed on objects.

In the following example we are using the toUpperCase() method of the String object to
display a text in uppercase letters:

<script type="text/javascript">

var str="Hello world!";
document.write(str.toUpperCase());
</script>

Scanned with CamScanner

